Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 388
Filter
2.
Vet Q ; 40(1): 243-249, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-2315258

ABSTRACT

Several cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection transmitted from human owners to their dogs have recently been reported. The first ever case of SARS-CoV-2 transmission from a human owner to a domestic cat was confirmed on March 27, 2020. A tiger from a zoo in New York, USA, was also reportedly infected with SARS-CoV-2. It is believed that SARS-CoV-2 was transmitted to tigers from their caretakers, who were previously infected with this virus. On May 25, 2020, the Dutch Minister of Agriculture, Nature and Food Quality reported that two employees were infected with SARS-CoV-2 transmitted from minks. These reports have influenced us to perform a comparative analysis among angiotensin-converting enzyme 2 (ACE2) homologous proteins for verifying the conservation of specific protein regions. One of the most conserved peptides is represented by the peptide "353-KGDFR-357 (H. sapiens ACE2 residue numbering), which is located on the surface of the ACE2 molecule and participates in the binding of SARS-CoV-2 spike receptor binding domain (RBD). Multiple sequence alignments of the ACE2 proteins by ClustalW, whereas the three-dimensional structure of its binding region for the spike glycoprotein of SARS-CoV-2 was assessed by means of Spanner, a structural homology modeling pipeline method. In addition, evolutionary phylogenetic tree analysis by ETE3 was used. ACE2 works as a receptor for the SARS-CoV-2 spike glycoprotein between humans, dogs, cats, tigers, minks, and other animals, except for snakes. The three-dimensional structure of the KGDFR hosting protein region involved in direct interactions with SARS-CoV-2 spike RBD of the mink ACE2 appears to form a loop structurally related to the human ACE2 corresponding protein loop, despite of the reduced available protein length (401 residues of the mink ACE2 available sequence vs 805 residues of the human ACE2). The multiple sequence alignments of the ACE2 proteins shows high homology and complete conservation of the five amino acid residues: 353-KGDFR-357 with humans, dogs, cats, tigers, minks, and other animals, except for snakes. Where the information revealed from our examinations can support precision vaccine design and the discovery of antiviral therapeutics, which will accelerate the development of medical countermeasures, the World Health Organization recently reported on the possible risks of reciprocal infections regarding SARS-CoV-2 transmission from animals to humans.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/transmission , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/transmission , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/genetics , COVID-19 , Cats , Coronavirus Infections/prevention & control , Dogs , Humans , Mink , Pandemics/prevention & control , Peptidyl-Dipeptidase A/chemistry , Phylogeny , Pneumonia, Viral/prevention & control , Receptors, Virus/chemistry , Receptors, Virus/genetics , SARS-CoV-2 , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry , Tigers
3.
EMBO J ; 42(4): e111737, 2023 02 15.
Article in English | MEDLINE | ID: covidwho-2241560

ABSTRACT

Bat-origin RshSTT182 and RshSTT200 coronaviruses (CoV) from Rhinolophus shameli in Southeast Asia (Cambodia) share 92.6% whole-genome identity with SARS-CoV-2 and show identical receptor-binding domains (RBDs). In this study, we determined the structure of the RshSTT182/200 receptor binding domain (RBD) in complex with human angiotensin-converting enzyme 2 (hACE2) and identified the key residues that influence receptor binding. The binding of the RshSTT182/200 RBD to ACE2 orthologs from 39 animal species, including 18 bat species, was used to evaluate its host range. The RshSTT182/200 RBD broadly recognized 21 of 39 ACE2 orthologs, although its binding affinities for the orthologs were weaker than those of the RBD of SARS-CoV-2. Furthermore, RshSTT182 pseudovirus could utilize human, fox, and Rhinolophus affinis ACE2 receptors for cell entry. Moreover, we found that SARS-CoV-2 induces cross-neutralizing antibodies against RshSTT182 pseudovirus. Taken together, these findings indicate that RshSTT182/200 can potentially infect susceptible animals, but requires further evolution to obtain strong interspecies transmission abilities like SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2 , Betacoronavirus , Chiroptera , Spike Glycoprotein, Coronavirus , Animals , Humans , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Chiroptera/metabolism , Chiroptera/virology , Host Specificity , Protein Binding , Receptors, Virus/chemistry , Receptors, Virus/metabolism , SARS-CoV-2/metabolism , Betacoronavirus/metabolism , Betacoronavirus/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
4.
Life Sci ; 255: 117831, 2020 Aug 15.
Article in English | MEDLINE | ID: covidwho-1267781

ABSTRACT

A new SARS coronavirus (SARS-CoV-2) belonging to the genus Betacoronavirus has caused a pandemic known as COVID-19. Among coronaviruses, the main protease (Mpro) is an essential drug target which, along with papain-like proteases catalyzes the processing of polyproteins translated from viral RNA and recognizes specific cleavage sites. There are no human proteases with similar cleavage specificity and therefore, inhibitors are highly likely to be nontoxic. Therefore, targeting the SARS-CoV-2 Mpro enzyme with small molecules can block viral replication. The present study is aimed at the identification of promising lead molecules for SARS-CoV-2 Mpro enzyme through virtual screening of antiviral compounds from plants. The binding affinity of selected small drug-like molecules to SARS-CoV-2 Mpro, SARS-CoV Mpro and MERS-CoV Mpro were studied using molecular docking. Bonducellpin D was identified as the best lead molecule which shows higher binding affinity (-9.28 kcal/mol) as compared to the control (-8.24 kcal/mol). The molecular binding was stabilized through four hydrogen bonds with Glu166 and Thr190 as well as hydrophobic interactions via eight residues. The SARS-CoV-2 Mpro shows identities of 96.08% and 50.65% to that of SARS-CoV Mpro and MERS-CoV Mpro respectively at the sequence level. At the structural level, the root mean square deviation (RMSD) between SARS-CoV-2 Mpro and SARS-CoV Mpro was found to be 0.517 Å and 0.817 Å between SARS-CoV-2 Mpro and MERS-CoV Mpro. Bonducellpin D exhibited broad-spectrum inhibition potential against SARS-CoV Mpro and MERS-CoV Mpro and therefore is a promising drug candidate, which needs further validations through in vitro and in vivo studies.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/enzymology , Coronavirus Infections/drug therapy , Plant Extracts/pharmacology , Pneumonia, Viral/drug therapy , Viral Nonstructural Proteins/antagonists & inhibitors , Amino Acid Sequence , Antiviral Agents/chemistry , Betacoronavirus/metabolism , Binding Sites , COVID-19 , Computer Simulation , Coronavirus 3C Proteases , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Drug Evaluation, Preclinical/methods , Humans , Molecular Docking Simulation , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Protease Inhibitors/chemistry , Protein Binding , SARS-CoV-2 , Small Molecule Libraries/pharmacology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
6.
Viruses ; 12(6)2020 06 10.
Article in English | MEDLINE | ID: covidwho-1726021

ABSTRACT

The ongoing Coronavirus Disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) signals an urgent need for an expansion in treatment options. In this study, we investigated the anti-SARS-CoV-2 activities of 22 antiviral agents with known broad-spectrum antiviral activities against coronaviruses and/or other viruses. They were first evaluated in our primary screening in VeroE6 cells and then the most potent anti-SARS-CoV-2 antiviral agents were further evaluated using viral antigen expression, viral load reduction, and plaque reduction assays. In addition to remdesivir, lopinavir, and chloroquine, our primary screening additionally identified types I and II recombinant interferons, 25-hydroxycholesterol, and AM580 as the most potent anti-SARS-CoV-2 agents among the 22 antiviral agents. Betaferon (interferon-ß1b) exhibited the most potent anti-SARS-CoV-2 activity in viral antigen expression, viral load reduction, and plaque reduction assays among the recombinant interferons. The lipogenesis modulators 25-hydroxycholesterol and AM580 exhibited EC50 at low micromolar levels and selectivity indices of >10.0. Combinational use of these host-based antiviral agents with virus-based antivirals to target different processes of the SARS-CoV-2 replication cycle should be evaluated in animal models and/or clinical trials.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Animals , Antigens, Viral/immunology , Betacoronavirus/immunology , Betacoronavirus/metabolism , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/virology , Humans , Interferons/metabolism , Lipogenesis/drug effects , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Signal Transduction/drug effects , Vero Cells , Viral Load/drug effects , Viral Plaque Assay , Virus Replication/drug effects
7.
Viruses ; 12(5)2020 04 26.
Article in English | MEDLINE | ID: covidwho-1726007

ABSTRACT

In January 2020, Chinese health agencies reported an outbreak of a novel coronavirus-2 (CoV-2) which can lead to severe acute respiratory syndrome (SARS). The virus, which belongs to the coronavirus family (SARS-CoV-2), was named coronavirus disease 2019 (COVID-19) and declared a pandemic by the World Health Organization (WHO). Full-length genome sequences of SARS-CoV-2 showed 79.6% sequence identity to SARS-CoV, with 96% identity to a bat coronavirus at the whole-genome level. COVID-19 has caused over 133,000 deaths and there are over 2 million total confirmed cases as of April 15th, 2020. Current treatment plans are still under investigation due to a lack of understanding of COVID-19. One potential mechanism to slow disease progression is the use of antiviral drugs to either block the entry of the virus or interfere with viral replication and maturation. Currently, antiviral drugs, including chloroquine/hydroxychloroquine, remdesivir, and lopinavir/ritonavir, have shown effective inhibition of SARS-CoV-2 in vitro. Due to the high dose needed and narrow therapeutic window, many patients are experiencing severe side effects with the above drugs. Hence, repurposing these drugs with a proper formulation is needed to improve the safety and efficacy for COVID-19 treatment. Extracellular vesicles (EVs) are a family of natural carriers in the human body. They play a critical role in cell-to-cell communications. EVs can be used as unique drug carriers to deliver protease inhibitors to treat COVID-19. EVs may provide targeted delivery of protease inhibitors, with fewer systemic side effects. More importantly, EVs are eligible for major aseptic processing and can be upscaled for mass production. Currently, the FDA is facilitating applications to treat COVID-19, which provides a very good chance to use EVs to contribute in this combat.


Subject(s)
Coronavirus Infections/drug therapy , Drug Repositioning , Extracellular Vesicles/chemistry , HIV Protease Inhibitors/administration & dosage , Pneumonia, Viral/drug therapy , Betacoronavirus/genetics , Betacoronavirus/metabolism , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Drug Approval , Drug Delivery Systems , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2
9.
Food Funct ; 11(6): 5565-5572, 2020 Jun 24.
Article in English | MEDLINE | ID: covidwho-1721602

ABSTRACT

To date, no specific drug has been discovered for the treatment of COVID-19 and hence, people are in a state of anxiety. Thus, there is an urgent need to search for various possible strategies including nutritional supplementation. In this study, we have tried to provide a reference for protein supplementation. Specifically, 20 marine fish proteins were subjected to in silico hydrolysis by gastrointestinal enzymes, and a large number of active peptides were generated. Then, the binding abilities of these peptides to SARS-CoV-2 main protease and monoamine oxidase A were assessed. The results showed that NADH dehydrogenase could be a good protein source in generating potent binders to the two enzymes, followed by cytochrome b. In addition, some high-affinity oligopeptides (VIQY, ICIY, PISQF, VISAW, AIPAW, and PVSQF) were identified as dual binders to the two enzymes. In summary, the supplementation of some fish proteins can be helpful for COVID-19 patients; the identified oligopeptides can be used as the lead compounds to design potential inhibitors against COVID-19 and anxiety.


Subject(s)
Antiviral Agents/metabolism , Betacoronavirus/metabolism , Coronavirus Infections/virology , Dietary Supplements , Fish Proteins/metabolism , Monoamine Oxidase/metabolism , Pneumonia, Viral/virology , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Aquatic Organisms , Betacoronavirus/enzymology , COVID-19 , Coronavirus Infections/drug therapy , Decapodiformes/metabolism , Fish Proteins/chemistry , Fish Proteins/therapeutic use , Fishes/metabolism , Models, Molecular , Molecular Docking Simulation , Monoamine Oxidase Inhibitors , Pandemics , Perciformes/metabolism , Pneumonia, Viral/drug therapy , Protein Binding , Protein Conformation , SARS-CoV-2 , Salmon/metabolism , Tuna/metabolism
10.
Eur J Clin Microbiol Infect Dis ; 39(6): 1021-1026, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-1718753

ABSTRACT

Since December 2019, the infection of the new coronavirus (COVID-19) caused an outbreak of new coronavirus pneumonia in Wuhan, China, and caused great public concern. Both COVID-19 and SARS-CoV belong to the coronavirus family and both invade target cells through ACE2. An in-depth understanding of ACE2 and a series of physiological and physiological changes caused by the virus invading the human body may help to discover and explain the corresponding clinical phenomena and then deal with them timely. In addition, ACE2 is a potential therapeutic target. This article will summarize the role of ACE2 in multiple organ damage caused by COVID-19 and SARS-CoV, targeted blocking drugs against ACE2, and drugs that inhibit inflammation in order to provide the basis for subsequent related research, diagnosis and treatment, and drug development.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Betacoronavirus/metabolism , Coronavirus Infections , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral , Pneumonia , Severe Acute Respiratory Syndrome , Severe acute respiratory syndrome-related coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Humans , Pneumonia/etiology , Pneumonia/therapy , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , SARS-CoV-2 , Severe Acute Respiratory Syndrome/complications , Severe Acute Respiratory Syndrome/drug therapy
11.
J Bioinform Comput Biol ; 20(1): 2150034, 2022 02.
Article in English | MEDLINE | ID: covidwho-1640496

ABSTRACT

HCoV-HKU1 is a [Formula: see text]-coronavirus with low pathogenicity, which usually leads to respiratory diseases. At present, a controversial issue is that whether the receptor binding site (RBS) of HCoV-HKU1 is located in the N-terminal domain (NTD) or the C-terminal domain (CTD) in the HCoV-HKU1 S protein. To address this issue, we used molecular docking technology to dock the NTD and CTD with 9-oxoacetylated sialic acid (9-O-Ac-Sia), respectively, with the results showing that the RBS of HCoV-HKU1 is located in the NTD (amino acid residues 80-95, 25-32). Our findings clarified the structural basis and molecular mechanism of the HCoV-HKU1 infection, providing important information for the development of therapeutic antibody drugs and the design of vaccines.


Subject(s)
Coronavirus , Spike Glycoprotein, Coronavirus , Betacoronavirus/metabolism , Binding Sites , Molecular Docking Simulation , Spike Glycoprotein, Coronavirus/metabolism
12.
mBio ; 12(5): e0237121, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1440804

ABSTRACT

In 2019, a new pandemic virus belonging to the betacoronavirus family emerged, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This new coronavirus appeared in Wuhan, China, and is responsible for severe respiratory pneumonia in humans, namely, coronavirus disease 2019 (COVID-19). Having infected almost 200 million people worldwide and caused more than 4.1 million deaths as of today, this new disease has raised a significant number of questions about its molecular mechanism of replication and, in particular, how infectious viral particles are produced. Although viral entry is well characterized, the full assembly steps of SARS-CoV-2 have still not been fully described. Coronaviruses, including SARS-CoV-2, have four main structural proteins, namely, the spike glycoprotein (S), the membrane glycoprotein (M), the envelope protein (E), and the nucleocapsid protein (N). All these proteins have key roles in the process of coronavirus assembly and budding. In this review, we gathered the current knowledge about betacoronavirus structural proteins involved in viral particle assembly, membrane curvature and scission, and then egress in order to suggest and question a coherent model for SARS-CoV-2 particle production and release.


Subject(s)
Betacoronavirus/metabolism , SARS-CoV-2/metabolism , Membrane Glycoproteins/metabolism , Nucleocapsid Proteins/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Assembly/physiology
13.
J Clin Invest ; 130(11): 6151-6157, 2020 11 02.
Article in English | MEDLINE | ID: covidwho-1435146

ABSTRACT

Emerging data indicate that complement and neutrophils contribute to the maladaptive immune response that fuels hyperinflammation and thrombotic microangiopathy, thereby increasing coronavirus 2019 (COVID-19) mortality. Here, we investigated how complement interacts with the platelet/neutrophil extracellular traps (NETs)/thrombin axis, using COVID-19 specimens, cell-based inhibition studies, and NET/human aortic endothelial cell (HAEC) cocultures. Increased plasma levels of NETs, tissue factor (TF) activity, and sC5b-9 were detected in patients. Neutrophils of patients yielded high TF expression and released NETs carrying active TF. Treatment of control neutrophils with COVID-19 platelet-rich plasma generated TF-bearing NETs that induced thrombotic activity of HAECs. Thrombin or NETosis inhibition or C5aR1 blockade attenuated platelet-mediated NET-driven thrombogenicity. COVID-19 serum induced complement activation in vitro, consistent with high complement activity in clinical samples. Complement C3 inhibition with compstatin Cp40 disrupted TF expression in neutrophils. In conclusion, we provide a mechanistic basis for a pivotal role of complement and NETs in COVID-19 immunothrombosis. This study supports strategies against severe acute respiratory syndrome coronavirus 2 that exploit complement or NETosis inhibition.


Subject(s)
Betacoronavirus , Complement Membrane Attack Complex , Coronavirus Infections , Extracellular Traps , Neutrophils , Pandemics , Pneumonia, Viral , Thromboplastin , Thrombosis , Aged , Betacoronavirus/immunology , Betacoronavirus/metabolism , COVID-19 , Complement Activation/drug effects , Complement Membrane Attack Complex/immunology , Complement Membrane Attack Complex/metabolism , Coronavirus Infections/blood , Coronavirus Infections/immunology , Extracellular Traps/immunology , Extracellular Traps/metabolism , Female , Humans , Male , Middle Aged , Neutrophils/immunology , Neutrophils/metabolism , Peptides, Cyclic/pharmacology , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/blood , Receptor, Anaphylatoxin C5a/immunology , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Thrombin/immunology , Thrombin/metabolism , Thromboplastin/immunology , Thromboplastin/metabolism , Thrombosis/blood , Thrombosis/immunology , Thrombosis/virology
14.
Sci Adv ; 6(28): eabb8097, 2020 07.
Article in English | MEDLINE | ID: covidwho-1388430

ABSTRACT

The prevalence of respiratory illness caused by the novel SARS-CoV-2 virus associated with multiple organ failures is spreading rapidly because of its contagious human-to-human transmission and inadequate globalhealth care systems. Pharmaceutical repurposing, an effective drug development technique using existing drugs, could shorten development time and reduce costs compared to those of de novo drug discovery. We carried out virtual screening of antiviral compounds targeting the spike glycoprotein (S), main protease (Mpro), and the SARS-CoV-2 receptor binding domain (RBD)-angiotensin-converting enzyme 2 (ACE2) complex of SARS-CoV-2. PC786, an antiviral polymerase inhibitor, showed enhanced binding affinity to all the targets. Furthermore, the postfusion conformation of the trimeric S protein RBD with ACE2 revealed conformational changes associated with PC786 drug binding. Exploiting immunoinformatics to identify T cell and B cell epitopes could guide future experimental studies with a higher probability of discovering appropriate vaccine candidates with fewer experiments and higher reliability.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Cysteine Endopeptidases/chemistry , Drug Design , Pandemics/prevention & control , Peptidyl-Dipeptidase A/chemistry , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/chemistry , Viral Nonstructural Proteins/chemistry , Angiotensin-Converting Enzyme 2 , Benzamides , Benzazepines , Betacoronavirus/drug effects , Betacoronavirus/metabolism , Binding Sites , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cysteine Endopeptidases/immunology , Cysteine Endopeptidases/metabolism , Drug Evaluation, Preclinical , Epitopes, B-Lymphocyte/drug effects , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/drug effects , Epitopes, T-Lymphocyte/immunology , Humans , Molecular Docking Simulation , Peptidyl-Dipeptidase A/immunology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Protein Binding , Protein Conformation , Protein Domains , Protein Interaction Domains and Motifs , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Spiro Compounds/pharmacology , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/metabolism
15.
Sci Rep ; 10(1): 18149, 2020 10 23.
Article in English | MEDLINE | ID: covidwho-1387454

ABSTRACT

Antigens displayed on self-assembling nanoparticles can stimulate strong immune responses and have been playing an increasingly prominent role in structure-based vaccines. However, the development of such immunogens is often complicated by inefficiencies in their production. To alleviate this issue, we developed a plug-and-play platform using the spontaneous isopeptide-bond formation of the SpyTag:SpyCatcher system to display trimeric antigens on self-assembling nanoparticles, including the 60-subunit Aquifex aeolicus lumazine synthase (LuS) and the 24-subunit Helicobacter pylori ferritin. LuS and ferritin coupled to SpyTag expressed well in a mammalian expression system when an N-linked glycan was added to the nanoparticle surface. The respiratory syncytial virus fusion (F) glycoprotein trimer-stabilized in the prefusion conformation and fused with SpyCatcher-could be efficiently conjugated to LuS-SpyTag or ferritin-SpyTag, enabling multivalent display of F trimers with prefusion antigenicity. Similarly, F-glycoprotein trimers from human parainfluenza virus-type 3 and spike-glycoprotein trimers from SARS-CoV-2 could be displayed on LuS nanoparticles with decent yield and antigenicity. Notably, murine vaccination with 0.08 µg of SARS-CoV-2 spike-LuS nanoparticle elicited similar neutralizing responses as 2.0 µg of spike, which was ~ 25-fold higher on a weight-per-weight basis. The versatile platform described here thus allows for multivalent plug-and-play presentation on self-assembling nanoparticles of trimeric viral antigens, with SARS-CoV-2 spike-LuS nanoparticles inducing particularly potent neutralizing responses.


Subject(s)
Antigens/immunology , Betacoronavirus/metabolism , Nanoparticles/chemistry , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antigens/genetics , Antigens/metabolism , Aquifex , Bacteria/enzymology , Bacterial Proteins/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections , Ferritins/genetics , Helicobacter pylori/metabolism , Humans , Mice , Multienzyme Complexes/genetics , Neutralization Tests , Pandemics , Pneumonia, Viral , Protein Multimerization , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Surface Properties
16.
Nat Commun ; 11(1): 5874, 2020 11 18.
Article in English | MEDLINE | ID: covidwho-1387320

ABSTRACT

Non-structural proteins (nsp) constitute the SARS-CoV-2 replication and transcription complex (RTC) to play a pivotal role in the virus life cycle. Here we determine the atomic structure of a SARS-CoV-2 mini RTC, assembled by viral RNA-dependent RNA polymerase (RdRp, nsp12) with a template-primer RNA, nsp7 and nsp8, and two helicase molecules (nsp13-1 and nsp13-2), by cryo-electron microscopy. Two groups of mini RTCs with different conformations of nsp13-1 are identified. In both of them, nsp13-1 stabilizes overall architecture of the mini RTC by contacting with nsp13-2, which anchors the 5'-extension of RNA template, as well as interacting with nsp7-nsp8-nsp12-RNA. Orientation shifts of nsp13-1 results in its variable interactions with other components in two forms of mini RTC. The mutations on nsp13-1:nsp12 and nsp13-1:nsp13-2 interfaces prohibit the enhancement of helicase activity achieved by mini RTCs. These results provide an insight into how helicase couples with polymerase to facilitate its function in virus replication and transcription.


Subject(s)
Betacoronavirus/chemistry , Betacoronavirus/physiology , Virus Replication , Betacoronavirus/genetics , Betacoronavirus/metabolism , Binding Sites , Cryoelectron Microscopy , Humans , Methyltransferases/chemistry , Methyltransferases/genetics , Methyltransferases/metabolism , Models, Molecular , Mutation , Protein Binding , Protein Conformation , RNA Helicases/chemistry , RNA Helicases/genetics , RNA Helicases/metabolism , RNA, Viral/metabolism , SARS-CoV-2 , Structure-Activity Relationship , Transcription, Genetic , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
17.
Signal Transduct Target Ther ; 5(1): 220, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-1387194
19.
Fertil Steril ; 114(2): 223-232, 2020 08.
Article in English | MEDLINE | ID: covidwho-1385570

ABSTRACT

OBJECTIVE: To determine the susceptibility of the endometrium to infection by-and thereby potential damage from-SARS-CoV-2. DESIGN: Analysis of SARS-Cov-2 infection-related gene expression from endometrial transcriptomic data sets. SETTING: Infertility research department affiliated with a public hospital. PATIENT(S): Gene expression data from five studies in 112 patients with normal endometrium collected throughout the menstrual cycle. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Gene expression and correlation between viral infectivity genes and age throughout the menstrual cycle. RESULT(S): Gene expression was high for TMPRSS4, CTSL, CTSB, FURIN, MX1, and BSG; medium for TMPRSS2; and low for ACE2. ACE2, TMPRSS4, CTSB, CTSL, and MX1 expression increased toward the window of implantation. TMPRSS4 expression was positively correlated with ACE2, CTSB, CTSL, MX1, and FURIN during several cycle phases; TMPRSS2 was not statistically significantly altered across the cycle. ACE2, TMPRSS4, CTSB, CTSL, BSG, and MX1 expression increased with age, especially in early phases of the cycle. CONCLUSION(S): Endometrial tissue is likely safe from SARS-CoV-2 cell entry based on ACE2 and TMPRSS2 expression, but susceptibility increases with age. Further, TMPRSS4, along with BSG-mediated viral entry into cells, could imply a susceptible environment for SARS-CoV-2 entry via different mechanisms. Additional studies are warranted to determine the true risk of endometrial infection by SARS-CoV-2 and implications for fertility treatments.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/metabolism , Endometrium/metabolism , Endometrium/virology , Gene Expression Regulation, Viral , Pneumonia, Viral/metabolism , Adult , Age Factors , Angiotensin-Converting Enzyme 2 , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/genetics , Female , Humans , Menstrual Cycle , Middle Aged , Pandemics , Peptidyl-Dipeptidase A/biosynthesis , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/genetics , Risk Assessment/methods , SARS-CoV-2 , Virus Internalization , Young Adult
20.
PLoS One ; 16(8): e0256482, 2021.
Article in English | MEDLINE | ID: covidwho-1376627

ABSTRACT

BACKGROUND: The effects of pre-existing endemic human coronavirus (HCoV) immunity on SARS-CoV-2 serologic and clinical responses are incompletely understood. OBJECTIVES: We sought to determine the effects of prior exposure to HCoV Betacoronavirus HKU1 spike protein on serologic responses to SARS-CoV-2 spike protein after intramuscular administration in mice. We also sought to understand the baseline seroprevalence of HKU1 spike antibodies in healthy children and to measure their correlation with SARS-CoV-2 binding and neutralizing antibodies in children hospitalized with acute coronavirus disease 2019 (COVID-19) or multisystem inflammatory syndrome (MIS-C). METHODS: Groups of 5 mice were injected intramuscularly with two doses of alum-adjuvanted HKU1 spike followed by SARS-CoV-2 spike; or the reciprocal regimen of SARS-Cov-2 spike followed by HKU1 spike. Sera collected 21 days following each injection was analyzed for IgG antibodies to HKU1 spike, SARS-CoV-2 spike, and SARS-CoV-2 neutralization. Sera from children hospitalized with acute COVID-19, MIS-C or healthy controls (n = 14 per group) were analyzed for these same antibodies. RESULTS: Mice primed with SARS-CoV-2 spike and boosted with HKU1 spike developed high titers of SARS-CoV-2 binding and neutralizing antibodies; however, mice primed with HKU1 spike and boosted with SARS-CoV-2 spike were unable to mount neutralizing antibodies to SARS-CoV-2. HKU1 spike antibodies were detected in all children with acute COVID-19, MIS-C, and healthy controls. Although children with MIS-C had significantly higher HKU1 spike titers than healthy children (GMT 37239 vs. 7551, P = 0.012), these titers correlated positively with both SARS-CoV-2 binding (r = 0.7577, P<0.001) and neutralizing (r = 0.6201, P = 0.001) antibodies. CONCLUSIONS: Prior murine exposure to HKU1 spike protein completely impeded the development of neutralizing antibodies to SARS-CoV-2, consistent with original antigenic sin. In contrast, the presence of HKU1 spike IgG antibodies in children with acute COVID-19 or MIS-C was not associated with diminished neutralizing antibody responses to SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , Betacoronavirus/metabolism , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Animals , Antibodies, Viral/immunology , Antigen-Antibody Reactions , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Child , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Mice , Mice, Inbred BALB C , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL